Questão 1
Determine o décimo termo de uma progressão geométrica cujo primeiro termo é 2 e a razão é 3.
a) 10
b) 29
c) 30
d) 39366
e) 130000
Questão 2
O oitavo termo de uma PG é 256 e o quarto termo dessa mesma PG é 16. Calcule seu primeiro termo.
a) 1
b) 2
c) 3
d) 4
e) 5
Questão 3
Qual é o décimo quinto termo da PG (1, 2, 4, 8, …)?
a) 10000
b) 12584
c) 16384
d) 20384
e) 22004
Questão 4
Considerando a PA de razão 2 e primeiro termo igual a 2, e a PG que possui mesma razão e mesmo primeiro termo, qual a diferença entre o décimo termo da PG e o décimo termo da PA?
a) 20
b) 1028
c) 1208
d) 1228
e) 1004
Resposta Questão 1
Alternativa D
A fórmula usada para determinar um termo qualquer de uma PG é:
an = a1·qn – 1
Substituindo os valores nessa fórmula, teremos:
an = a1·qn – 1
a10 = 2·310 – 1
a10 = 2·39
a10 = 2·19683
a10 = 39366
Resposta Questão 2
Alternativa B
Podemos considerar uma PG cujo primeiro termo é 16 e o quarto termo é 256. Isso porque do quarto até o oitavo existem quatro termos. Usando a fórmula do termo geral, fica fácil encontrar a razão dessa PG:
an = a1·qn – 1
a8 = a4·q8 – 4
256 = 16·q4
256 = q4
16
16 = q4
Como 16 = 24, teremos:
24 = q4
Logo,
q = 2
Para encontrar o primeiro termo, basta usar a mesma fórmula, considerando que a PG possui oitavo termo igual a 256 e razão igual a 2:
an = a1·qn – 1
256 = a1·28 – 1
256 = a1·27
256 = a1·128
256 = a1
128
a1 = 2
Resposta Questão 3
Alternativa C
Para encontrar o 15º termo da PG, basta usar a fórmula do termo geral:
an = a1·qn – 1
Note que a razão da PG é 2, pois esse é o resultado da divisão de qualquer termo por seu antecessor. Por exemplo, 2 : 1 = 2. Substituindo os valores na fórmula, teremos:
a15 = 1·215 – 1
a15 = 215 – 1
a15 = 214
a15 = 16384
Resposta Questão 4
Alternativa E
Substituindo as informações na fórmula do termo geral da PA teremos:
an = a1 + (n – 1)r
a10 = 2 + (10 – 1)·2
a10 = 2 + 9·2
a10 = 2 + 18
a10 = 20
Substituindo as informações na fórmula do termo geral da PG, teremos:
an = a1·qn – 1
a10 = 2·210 – 1
a10 = 2·29
a10 = 2·512
a10 = 1024
A diferença entre o décimo termo da PG e o décimo termo da PA é:
1024 – 20 = 1004