Whatsapp icon Whatsapp

Exercícios sobre soma dos ângulos internos de um polígono

Estes exercícios sobre soma dos ângulos internos de um polígono regular exigem conhecimentos a respeito da classificação de polígonos e sobre seus ângulos.

Questão 1

Calcule a soma dos ângulos internos de um triângulo qualquer e de um retângulo qualquer.

Questão 2

Calcule o valor de cada ângulo do quadrilátero seguinte:

Questão 3

(UNIFESP - 2003) Pentágonos regulares congruentes podem ser conectados lado a lado, formando uma estrela de cinco pontas, conforme destacado na figura a seguir

Nessas condições, o ângulo θ mede:

a) 108°.

b) 72°.

c) 54°.

d) 36°.

e) 18°.

Questão 4

(FAAP-97) A medida mais próxima de cada ângulo externo do heptágono regular da moeda de R$ 0,25 é:

a) 60°

b) 45°

c) 36°

d) 83°

e) 51°

Respostas

Resposta Questão 1

Independentemente do polígono a que o exercício ou situação se refira, a soma dos seus ângulos internos tem valor fixo e é dada pela fórmula S = (n – 2)·180, em que n é o número de lados do polígono. Logo,

Soma dos ângulos internos do triângulo:

S = (3 – 2)·180

S = 1·180

S = 180°

Qualquer que seja o triângulo, a soma de seus ângulos internos sempre será igual a 180°. Isso pode ser usado quando conhecemos as medidas de dois dos ângulos internos de um triângulo e é necessário calcular o valor da última.

Soma dos ângulos internos de um retângulo:

S = (4 – 2)·180

S = 2·180

S = 360°

Não só retângulos, mas qualquer que seja o quadrilátero, a soma de seus ângulos internos será 360°.

Resposta Questão 2

A soma dos ângulos internos de um quadrilátero é dada por:

S = (n – 2)·180

Sabendo que o número de lados da figura é 4, basta substituir n por 4:

S = (4 – 2)·180

S = 2·180

S = 360°

Agora some os ângulos internos dessa figura e iguale o resultado a 360°:

2x + 4x + 2x + 4x = 360

12x = 360

x = 360
     12

x = 30

Agora basta substituir x em cada ângulo para descobrir os seus valores.

4x = 4·30 = 120° e

2x = 2·30 = 60°

Os ângulos são 120° e 60°.

Resposta Questão 3

Na ponta da estrela onde está destacado o ângulo θ, temos o encontro de três ângulos internos de pentágonos regulares. Para descobrir a medida de cada um desses ângulos, basta calcular a soma dos ângulos internos do pentágono e dividir por 5.

A fórmula para calcular a soma dos ângulos internos de um polígono é:

S = (n – 2)·180

*n é o número de lados do polígono. No caso desse exercício:

S = (5 – 2)·180

S = 3·180

S = 540

Dividindo a soma dos ângulos internos por 5, pois um pentágono possui cinco ângulos internos, encontraremos 108° como medida de cada ângulo interno.

Observe na imagem anterior que a soma de três ângulos internos do pentágono com o ângulo θ tem como resultado 360°.

108 + 108 + 108 + θ = 360

324 + θ = 360

θ = 360 – 324

θ = 36°

Letra D.

Resposta Questão 4

Heptágonos são figuras geométricas que possuem sete lados, sete vértices e sete ângulos. Como esse heptágono é regular, então todos os seus ângulos e lados possuem a mesma medida.

A soma dos ângulos internos do heptágono é:

S = (n – 2)·180

S = (7 – 2)·180

S = 5·180

S = 900°

Cada ângulo interno do heptágono regular mede a soma dos ângulos internos dividida por 7.

900 = 128,57
7             

Agora, resta apenas descobrir o valor de um ângulo externo. Os ângulos externos de um polígono são suplementares aos ângulos internos respectivos. Portanto, a soma entre um ângulo interno e seu ângulo externo tem como resultado 180°. Dessa forma, os ângulos externos da moeda de 25 centavos medem:

128,57 + x = 180

x = 180 – 128,57

x = 51,43°

Letra E.

Assista às nossas videoaulas

Leia o artigo