Whatsapp icon Whatsapp

Exercícios sobre raiz quadrada aproximada

Esta lista de exercícios sobre raiz quadrada aproximada auxiliará em sua compreensão sobre como fazer cálculos quando a raiz quadrada não é exata.

Questão 1

A raiz quadrada de 72 está entre:

A) 4 e 5

B) 5 e 6

C) 6 e 7

D) 7 e 8

E) 8 e 9

Questão 2

A área de um quadrado é igual à multiplicação dos seus lados, ou seja, A = l². Se determinado quadrado possui área igual a 30 cm², então, utilizando aproximação de duas casas decimais, o valor da medida do lado desse quadrado é igual a:

A) 5,46

B) 5,48

C) 5,49

D) 5,51

E) 5,53

Questão 3

Um triângulo retângulo possui catetos medindo 1 cm. Nesse caso, podemos afirmar que o valor aproximado que melhor representa a medida da hipotenusa em centímetros é:

A) 1,2

B) 1,3

C) 1,4

D) 1,5

E) 1,6

Questão 4

Durante a resolução de uma equação do 2º grau, um engenheiro constatou que o discriminante dessa equação era um número que não possui raiz quadrada exata. Foi nesse momento então que ele decidiu utilizar uma aproximação para essa raiz. Se o valor do discriminante é 37, então a melhor aproximação para a raiz desse número é:

A) 6,0

B) 6,1

C) 6,2

D) 6,3

E) 6,4

Questão 5

O valor que mais se aproxima da expressão \(\sqrt{8^2-6^2}\) é:

A) 5,1

B) 5,2

C) 5,3

D) 5,4

E) 5,5

Questão 6

O número 6,48 é a aproximação por falta da raiz quadrada de:

A) 40

B) 41

C) 42

D) 43

E) 44

Questão 7

Sobre a \(\sqrt{120}\), podemos afirmar que:

I. Essa raiz quadrada é exata.

II. Ela está entre os números inteiros 10 e 11.

III. Sua aproximação é 10,95.

Marque a alternativa correta:

A) Todas as afirmativas são verdadeiras.

B) Somente a afirmativa I é falsa.

C) Somente a afirmativa II é falsa.

D) Somente a afirmativa III é falsa.

Questão 8

Quando a raiz quadrada não é exata, os babilônicos utilizavam a fórmula \(\sqrt{a^2+b}\approx a+\frac{b}{2a}\) para encontrarem uma aproximação do valor dela. Nessas condições, utilizando a = \(\frac{3}{2}\) e \(\frac{3}{4}\), podemos afirmar que:

A) \( \sqrt3\approx\frac{7}{2}\)

B) \( \sqrt3\approx\frac{2}{7}\)

C) \( \sqrt3\approx\frac{7}{4}\)

D) \( \sqrt3\approx\frac{4}{7}\)

Questão 9

Utilizando aproximação com uma casa decimal, encontre o valor da expressão:

\(\sqrt2+\sqrt3-\sqrt7\)

A) 0,5

B) 0,4

C) 0,3

D) 0,2

Questão 10

Um retângulo possui lados medindo \(\sqrt{18}\) cm e \(\sqrt{12}\) cm. Utilizando 2,45 como aproximação para \(\sqrt6\),

então a área desse retângulo é de, aproximadamente:

A) 44,1 cm²

B) 42,8 cm²

C) 44,0 cm²

D) 45,4 cm²

E) 46,7 cm²

Questão 11

Para calcular o volume do cilindro, utilizamos a fórmula V= πr2h. Sabendo que um cilindro tem 12 cm de altura e volume igual a 264π cm³, podemos afirmar que o raio r dele está entre:

A) 3 cm e 4 cm

B) 4 cm e 5 cm

C) 5 cm e 6 cm

D) 6 cm e 7 cm

E) 7 cm e 8 cm

Questão 12

Analisando os números a seguir, marque a alternativa que contém uma aproximação na raiz.

A) \( \sqrt4=2\)

B) \( \sqrt{1,21}=1,1\)

C) \( \sqrt{15,5}=3,94\)

D) \( \sqrt{16}=4\)

Respostas

Resposta Questão 1

Alternativa E

Sabemos que os quadrados perfeitos mais próximos de 72 são 64 e 81, logo, temos que:

\(\sqrt{64}<\sqrt{72}<\sqrt{81}\)

\(8<\sqrt{72}<9\)

A raiz quadrada de 72 está entre 8 e 9.

Resposta Questão 2

Alternativa B

Por aproximação, sabemos que 30 está entre os quadrados perfeitos 25 e 36, ou seja:

\(25<30<36\)

Calculando a raiz quadrada, temos que:

\(\sqrt{25}<\sqrt{30}<\sqrt{36}\)

\(5<\sqrt{30}<6\)

Então sabemos que a parte inteira da raiz é 5, agora encontraremos a primeira casa decimal.

5,1² = 26,01

5,2² = 27,04

5,3² = 28,09

5,4² = 29,16

5,5² = 30,25

Note então que 5,5² é maior que 30, logo, a primeira casa decimal é 4, então temos que:

\(5,4<\sqrt{30}<5,5\)

Faremos:

5,41² = 29,2681

5,42² = 29,3764

5,43² = 29,4849

5,44² = 29,5936

5,45² = 29,7025

5,46² = 29,8116

5,47² = 29,9209

5,48² = 30,0304

Então:

\(5,47<\sqrt{30}<5,48\)

Note que não há nas alternativas a opção 5,47, então utilizamos a aproximação por excesso: 5,48.

Resposta Questão 3

Alternativa C

Aplicando o teorema de Pitágoras, seja x a medida da hipotenusa, temos que:

x² = 1² + 1²

x² = 1 + 1

x² = 2

x = \(\sqrt2\)

Sabemos que \(\sqrt2\) está entre \(\sqrt1=1 \) e \(\sqrt4=2\).

1,1² = 1,21

1,2² = 1,44

1,3² = 1,69

1,4² = 1,96

1,5² = 2,25

Note que o valor que mais se aproxima de 2 é 1,4², então 2 ≈ 1,4.

Resposta Questão 4

Alternativa B

Sabemos que o 37 está entre os quadrados perfeitos 36 e 49. Como a raiz de 36 é 6, temos que:

6,0² = 36,00

6,1² = 37,21

Note que o valor com uma casa decimal que mais se aproxima da raiz de 37 é 6,1. Então temos que:

\(\sqrt{37}\cong6,1\)

Resposta Questão 5

Alternativa D

Sabemos que 8² = 64 e que 6² = 36, logo, temos que:

\(\sqrt{8^2-6^2}\)

\(\sqrt{64-36}\)

\(\sqrt{29}\)

A raiz quadrada de 29 está entre 5 e 6, pois sabemos que 5² = 25 e 6² = 36.

5,1² = 26,01

5,2² = 27,04

5,3² = 28,09

5,4² = 29,16

Note que o valor que mais se aproxima da raiz de 29 é 5,4.

Resposta Questão 6

Alternativa C

Calculando, 6,48² = 41,9904. Como se trata de uma aproximação por falta, então 6,48 é aproximadamente \( \sqrt{42}\).

Resposta Questão 7

Alternativa B

I. Essa raiz quadrada é exata. (falsa)

Essa raiz quadrada não é exata. Para saber seu resultado, utiliza-se raiz quadrada aproximada como estratégia.

II. Ela está entre os números inteiros 10 e 11. (verdadeira)

Sabemos que 120 está entre 100 e 121, cujas raízes são, respectivamente, 10 e 11, logo, a raiz de 120 está entre 10 e 11.

III. Sua aproximação é 10,95. (verdadeira)

Com duas casas decimais, a melhor aproximação para \(\sqrt{120}\) é 10,95.

Resposta Questão 8

Alternativa C

Substituindo na fórmula, temos que:

\(\sqrt{\left(\frac{3}{2}\right)^2+\frac{3}{4}}\approx\frac{3}{2}+\frac{\frac{3}{4}}{2\cdot\frac{3}{2}}\)

\(\sqrt{\frac{9}{4}+\frac{3}{4}}\approx\frac{3}{2}+\frac{\frac{3}{4}}{3}\)

\(\sqrt{\frac{12}{4}}\approx\frac{3}{2}+\frac{3}{2}\cdot\frac{1}{3}\)

\(\sqrt3\approx\frac{3}{2}+\frac{3^{:3}}{{12}_{:3}}\)

\(\sqrt3\approx\frac{3}{2}+\frac{1}{4}\)

\(\sqrt3\approx\frac{6+1}{4}\)

\(\sqrt3\approx\frac{7}{4}\)

Resposta Questão 9

Alternativa A

Primeiro encontraremos as aproximações de cada uma das raízes com uma casa decimal:

\(\sqrt2\approx1,4\)

\(\sqrt3=\ \approx1,7\)

\(\sqrt7\approx2,6\)

Agora, substituindo na expressão, temos que:

\(1,4+1,7-2,6=0,5\)

Resposta Questão 10

Alternativa A

Para calcular a área do retângulo, temos que:

\(A=\sqrt{18}\cdot\sqrt{12}\)

\(A=\sqrt{3^2\cdot2}\cdot\sqrt{2^2\cdot3}\)

\(A=9\sqrt2\cdot2\sqrt3\)

\(A=9\cdot2\sqrt{2\cdot3}\)

\(A=18\sqrt6\)

Utilizando aproximação para 6, temos que:

\(A = 18\cdot2,45\)

\(A = 44,1 cm²\)

Resposta Questão 11

Alternativa B

Sabemos que V = πr2h e temos que V = 264π e h = 12.

Então temos que:

\(264\pi=\pi r^2\cdot12\)

\(\frac{264\pi}{12\pi}=r^2\)

\(22=r^2\)

\(r=\sqrt{22}\)

Sabemos que os quadrados perfeitos próximos de 22 são 4² = 16 e 5² = 25, logo, o raio está entre 4 cm e 5 cm.

Resposta Questão 12

Alternativa C

Analisando as alternativas, vamos verificar se o quadrado da raiz é igual ao radicando, assim, temos que:

A) 2² = 4 (não é uma aproximação)

B) 1,1² = 1,21 (não é uma aproximação)

D) 3,94² = 15,5236 (é uma aproximação)

E) 4² = 16 (não é uma aproximação)

Então podemos afirmar que a única raiz quadrada para a qual foi usada uma aproximação é a da alternativa C.


Leia o artigo