Você está aqui
  1. Exercícios
  2. Exercícios de Matemática
  3. Exercícios sobre elipse

Exercícios sobre elipse

Esta lista de exercícios tem questões sobre a elipse, objeto de estudo da geometria analítica. É importante compreender os principais elementos da elipse e a sua equação.

Questão 1

(Enem 2015) A figura representa a vista superior de uma bola de futebol americano, cuja forma é um elipsoide obtido pela rotação de uma elipse em torno do eixo das abscissas. Os valores a e b são, respectivamente, a metade do seu comprimento horizontal e a metade do seu comprimento vertical. Para essa bola, a diferença entre os comprimentos horizontal e vertical é igual à metade do comprimento vertical.

Considere que o volume aproximado dessa bola é dado por V = 4ab². O volume dessa bola, em função apenas de b, é dado por:

A) 8b³

B) 6b³

C) 5b³

D) 4b³

E) 2b³

ver resposta


Questão 2

A distância focal da elipse que passa pelos pontos A1(-6, 0), A2(6, 0) e B1(0, 10) e B2(0, -10) é de:

A) 6

B) 8

C) 10

D) 12

E) 16

ver resposta


Questão 3

As coordenadas do foco da elipse, que possui a equação a seguir, são:

A) (0, 8) e (0, -8)

B) (4, 0) e (-4, 0)

C) (8, 0) e (-8, 0)

D) (4, 4) e (-4, 4)

E) (0, 4) e (4, 0)

ver resposta


Questão 4

Qual é a excentricidade da elipse 4x² + 25y² = 100 aproximadamente:

(Use √3 = 1,7 e √7 = 2,6)

A) 0,84

B) 1,13

C) 0,70

D) 0,88

E) 0,28

ver resposta


Questão 5

(UEL PR) Em uma praça dispõe-se de uma região retangular de 20 m de comprimento por 16 m de largura para construir um jardim. A exemplo de outros canteiros, este deverá ter a forma elíptica e estar inscrito nessa região retangular. Para aguá-lo, serão colocados dois aspersores nos pontos que correspondem aos focos da elipse. Qual será a distância entre os aspersores?

A) 4 m

B) 6 m

C) 8 m

D) 10 m

E) 12 m

ver resposta


Questão 6

A equação da elipse com o centro na origem do plano cartesiano e que passa pelos pontos A1(5, 0), A2 (-5, 0) e B2 (0, -4) é:

ver resposta


Questão 7

Uma elipse foi traçada no plano cartesiano a seguir:

Na geometria analítica, é possível descrever essa elipse por meio de uma equação. Nesse caso, a equação da elipse seria:

ver resposta


Questão 8

(Cesgranrio 2018) Uma câmara dos sussurros é um espaço em que, se duas pessoas estão nas posições especificadas como foco, elas podem falar entre si, mesmo sussurrando, a uma distância considerável. Isso porque os painéis colocados atrás delas são partes de uma mesma elipse cujos focos são as posições das cabeças das pessoas.

Na câmara de sussurros representada na Figura a seguir, a distância entre as duas pessoas é de 20 m, e a distância de cada pessoa até um vértice da elipse é de 2 m.

A equação da elipse que contém os painéis da câmara representada no sistema de eixos proposto na Figura é:

ver resposta


Questão 9

Qual é a excentricidade da elipse de equação 6x² + 9y² = 36:

ver resposta


Questão 10

Uma elipse possui eixo maior contido no eixo Oy, seu centro é igual à origem do plano cartesiano, e a distância do eixo menor é 12. Além disso, a distância entre os focos é de 20 unidades. Sendo assim, a distância focal dessa elipse é de:

A) 4

B) 6

C) 10

D) 12

E) 15

ver resposta


Questão 11

Em uma casa, será feita uma área de lazer no formato de uma elipse, com eixo maior medindo 7 metros e eixo menor medindo 5 metros. Para planejar a execução e os gastos nesse projeto, é importante calcular a área da área de lazer, que será de: (Use π = 3)

A) 105 m²

B) 52,5 m²

C) 43,0 m²

D) 35,0 m²

E) 26,5 m²

ver resposta


Questão 12

Sabendo que a diferença entre o comprimento do eixo maior e o seu eixo focal é igual a 4 e que o eixo menor mede 8 unidades, então o comprimento do maior eixo é igual a:

A) 5

B) 10

C) 6

D) 12

E) 9

ver resposta



Respostas

Resposta Questão 1

Alternativa B. Se a diferença entre o comprimento horizontal e o vertical é igual à metade do comprimento vertical, então, temos que:

2a – 2b = b

2a = b + 2b

2a = 3b

a  = 3b/2

a = 1,5b

Assim, para calcular o volume, temos que:

V = 4ab²

V = 4 (1,5b)b²

V = 6b²

voltar a questão


Resposta Questão 2

Alternativa E

Temos que b = 10 e a = 6, como b > a, então:

b² = a² + c²

10² = 6² + c²

100 = 36 + c²

100 – 36 = c²

64 = c²

c = √64

c = 8

Como a distância focal é 2c, então 2 · 8 = 16.

voltar a questão


Resposta Questão 3

Alternativa C

Para encontrar os focos da elipse, basta utilizar o teorema de Pitágoras, pois temos que:

a² = b² + c²

10² = 6² + c²

100 = 36 + c²

100 – 36 = c²

c² = 64

c = √64

c = 8

Como os focos estão no eixo x, então, os pontos são (8, 0) e (-8, 0).

voltar a questão


Resposta Questão 4

Alternativa D

Primeiro precisamos encontrar o valor de a e de b. Para isso, vamos passar o 100 dividindo cada um dos termos na equação:

Então, temos que:

a² = 25 → a = √25 = 5  

b² = 4 → b = √4 = 2

Para calcular a excentricidade, é necessário encontrar o valor de c. Como a > b, temos que:

a² = b² + c²

5² = 2² + c²

25 = 4 + c²

25 – 4 = c²

c² = 21

c = √21

Como conhecemos os valores de √3 e √7, então, temos que:

c = √21 = √7 · √3

c = 1,7 · 2,6

c = 4,42

A excentricidade é a razão entre c e a:

e = 4,42/5 = 0,884

voltar a questão


Resposta Questão 5

Alternativa E

Para entender melhor o problema, vamos ilustrar a situação:

Queremos a distância focal igual a 2c.

Então, temos que o eixo maior mede 20 metros, e o menor, 16 metros:

2a = 20

a = 20/2 = 10

b = 16/2 = 8

Utilizando o teorema de Pitágoras:

a² = b² + c²

10² = 8² + c²

100 = 64 + c²

100 – 64 = c²

c² = 36

c = √36

c = 6

Logo, a distância focal é 2c = 2 · 6 = 12 metros.

voltar a questão


Resposta Questão 6

Alternativa D

Nesse caso, temos que a = 5 e b = 4, então, a equação da elipse será:

voltar a questão


Resposta Questão 7

Alternativa C

Temos que c = 2 e b = 3. Note que o valor de a não foi dado. Como o foco está no eixo vertical, então:

b² = c² + a²

3² = 2² + a²

9 = 4 + a²

9 – 4 = a²

a² = 5

a = √5

voltar a questão


Resposta Questão 8

Alternativa E

Como a distância entre os focos é igual a 20 metros, então, 2c = 20 → c = 10.

Sabemos que o foco está a 2 metros da extremidade:

a = 10 + 2

a = 12

Conhecendo a e c, pelo teorema de Pitágoras, encontraremos o valor de b:

12² = c² + b²

12² = 10² + b²

144 = 10² + b²

144 – 100 = b²

b² = 44

b = √44

Então, temos que:

voltar a questão


Resposta Questão 9

Alternativa A

Primeiro vamos dividir todos os termos por 36 na equação:

Então, temos que:

a² = 6 → a = √6

b² = 4 → b = √4 = 2

Para calcular a excentricidade, precisamos encontrar o valor de c, como a > b, temos que:

a² = b² + c²

√6² = 2² + c²

6 = 4 + c²

c² = 6 – 4

c = √2

Por fim, vamos calcular a excentricidade:

voltar a questão


Resposta Questão 10

Alternativa D

O eixo maior é o eixo y, então:

2b = 20

b = 20/2

b = 10

2a = 12

a = 12/2

a = 6

Aplicando o teorema de Pitágoras:

b² = a² + c²

10² = 6² + c²

100 = 64 + c²

100 – 64 = c²

c² = 36

c = √36

c = 6

A distância focal é: 2c → 2 · 6 = 12

voltar a questão


Resposta Questão 11

Alternativa E

A área da elipse é dada por: A = ab π

Como não foi definida a posição da elipse, e nesse caso ela é indiferente, faremos 2a como comprimento do eixo maior:

2a = 7

a = 7/2

a = 3,5
 

2b = 5

b = 5/2

b = 2,5
 

A = ab π

A = 3,5 · 2,5 · 3 = 26,5

voltar a questão


Resposta Questão 12

Alternativa B

Suponha que o eixo maior seja o horizontal, então, 2a – 2c = 4. Se dividirmos por dois, temos que:

a – c = 2

a = 2 + c

Além disso, sabemos que:

2b = 8

b = 8/2

b = 4

Pela relação pitagórica, temos que:

a² = b² + c²

(2 + c)² = 4² + c²

4 + 4c + c² = 16 + c²

c² – c² + 4c = 16 – 4

4c = 12

c = 12/4

c = 3

Então, temos que:

a² = 4² + 3²

a² = 16 + 9

a² = 25

a = √25

a = 5

Então o comprimento do eixo maior é: 2a = 2 · 5 = 10

voltar a questão


Artigo relacionado
Leia o artigo relacionado a este exercício e esclareça suas dúvidas
  • Elipse

    Resolva nossos exercícios sobre elipse para fixar seus conhecimentos!
  • Uso dos porquês

    Que tal exercitar seus conhecimentos sobre os porquês? Responda!
  • Verbos

    O quanto você conhece sobre verbos? Nossas questões te colocam à prova!