Whatsapp icon Whatsapp

Exercícios sobre a área de figuras semelhantes

Esta lista de exercícios trata da área de figuras semelhantes e objetiva testar seus conhecimentos sobre esse assunto relacionado à Geometria.

Questão 1

Dois quadrados possuem, respectivamente, lados medindo 12 centímetros e 24 centímetros. Qual é a razão entre a área do quadrado menor e a área do quadrado maior?

a) 0,25

b) 0,5

c) 2

d) 4

e) 1

Questão 2

Dois retângulos são semelhantes. O primeiro deles mede 10 centímetros de largura por 8 centímetros de comprimento. O segundo retângulo mede 20 centímetros de largura por 16 centímetros de comprimento. Qual é a razão de semelhança entre a área do polígono maior e a área do polígono menor?

a) 0,25

b) 0,5

c) 2

d) 4

e) 8

Questão 3

Qual é a razão de semelhança entre dois polígonos cujas áreas medem 25 cm2 e 36 cm2, respectivamente?

a) 0,43

b) 0,53

c) 0,63

d) 0,73

e) 0,83

Questão 4

Dados dois polígonos semelhantes, determine a área do menor sabendo que a área do maior é igual a 64 cm2 e que a razão de semelhança entre eles é de 0,5.

a) 8 cm2

b) 16 cm2

c) 20 cm2

d) 40 cm2

e) 256 cm2

Respostas

Resposta Questão 1

A razão entre a área do quadrado menor e a área do quadrado maior é igual ao quadrado da razão entre os lados desses mesmos quadrados. Assim, a razão entre os lados desses quadrados é dada por:

12 = 0,5
24        

E o quadrado desse resultado será:

(0,5)2 = 0,25

A razão entre a área do quadrado menor e a área do quadrado maior é igual a 0,25.

Gabarito: Letra A.

Resposta Questão 2

A razão de semelhança entre os lados dos polígonos, na ordem estabelecida, é:

20 = 2
10      

O quadrado desse resultado é obtido por 22 = 4.

Gabarito: Letra D.

Resposta Questão 3

Para calcular a razão de semelhança entre esses dois polígonos, utilize a expressão a seguir:

L2 = A1
       A2

L2 = 25
       36

L = √25
      √36

L = 5
     6

A razão de semelhança entre as áreas das figuras é de aproximadamente 0,83.

Gabarito: Letra E.

Resposta Questão 4

Usando a mesma relação entre razão de semelhança e medidas de área, temos:

L2 = A
        A2

0,52 = A
          64

0,25·64 = A

A = 16 cm2.

Sabemos que a área do polígono maior está relacionada ao denominador dessa fração porque a razão de semelhança é menor que 1.

Gabarito: Letra B.


Leia o artigo