Você está aqui
  1. Exercícios
  2. Exercícios de Matemática
  3. Exercícios sobre função exponencial

Exercícios sobre função exponencial

Esta lista de exercícios sobre funções exponenciais vai te ajudar a consolidar seus conhecimentos sobre a lei de formação e demais características da função exponencial.

Questão 1

Dada uma função de R → R com a lei de formação f(x) = ax, em que a é um número positivo diferente de 1, julgue as afirmativas a seguir:

I → Essa função será crescente se a for positivo.

II → Se x = 0, então, f(x) = 1.

III → Essa é uma função exponencial.

Marque a alternativa correta:

A) Somente a afirmativa I é falsa.

B) Somente a afirmativa II é falsa.

C) Somente a afirmativa III é falsa.

D) Todas as afirmativas são verdadeiras.

E) Todas as afirmativas são falsas.

ver resposta


Questão 2

Dada a função f(x) = 2x+3 + 10, o valor de x para que f(x) = 42 é de:

A) 2

B) 3

C) 4

D) 5

E) 6

ver resposta


Questão 3

Dada a função exponencial f(x) = (k – 4)x, sabendo que essa função é decrescente, o valor de k está entre:

A) 1 e 2

B) 2 e 3

C) 3 e 4

D) 4 e 5

E) 5 e 6

ver resposta


Questão 4

Um botânico, encantado com o pau-brasil, dedicou-se, durante anos de estudos, a conseguir criar uma função exponencial que medisse o crescimento dessa árvore no decorrer do tempo. Sua conclusão foi que, ao plantar-se essa árvore, seu crescimento, no decorrer dos anos, é dado por C(t) = 0,5 · 2t – 1. Analisando essa função, quanto tempo essa árvore leva para atingir a altura de 16 metros?

A) 7 anos

B) 6 anos

C) 5 anos

D) 4 anos

E) 3 anos

ver resposta


Questão 5

(Enem) Um trabalhador possui um cartão de crédito que, em determinado mês, apresenta o saldo devedor a pagar no vencimento do cartão, mas não contém parcelamentos a acrescentar em futuras faturas. Nesse mesmo mês, o trabalhador é demitido. Durante o período de desemprego, o trabalhador deixa de utilizar o cartão de crédito e também não tem como pagar as faturas, nem a atual nem as próximas, mesmo sabendo que, a cada mês, incidirão taxas de juros e encargos por conta do não pagamento da dívida. Ao conseguir um novo emprego, já completados 6 meses de não pagamento das faturas, o trabalhador procura renegociar sua dívida. O gráfico mostra a evolução do saldo devedor.

Com base no gráfico, podemos constatar que o saldo devedor inicial, a parcela mensal de juros e a taxa de juros são

A) R$ 500, constante e inferior a 10% ao mês.

B) R$ 560, variável e inferior a 10% ao mês.

C) R$ 500, variável e superior a 10% ao mês.

D) R$ 560, constante e superior a 10% ao mês.

E) R$ 500, variável e inferior a 10% ao mês

ver resposta


Questão 6

Quando uma matéria é radioativa, é comum que a sua massa se desintegre, no decorrer do tempo, de forma exponencial. O césio 137, por exemplo, possui meia-vida após 30 anos, ou seja, se havia, inicialmente, uma massa m0 de césio, após 30 anos, haverá metade de m0. Para descrever melhor essa situação, temos a função exponencial:

x→ quantidade de meias-vidas

m0 → massa inicial

f(x) → massa final

Pensando nisso, se houver 80 gramas de césio 137, inicialmente, após 150 anos, haverá um total de:

A) 2,0 gramas

B) 2,5 gramas

C) 3,0 gramas

D) 3,5 gramas

E) 5,0 gramas

ver resposta


Questão 7

O gráfico, a seguir, é a representação de uma função exponencial:

Analisando o gráfico, a lei de formação dessa função exponencial é:

A) f(x) = 5x

B) f(x) = 0,2x

C) f(x) = 2x

D) f(x) = 0,5x

E) f(x) = 0,5-x

ver resposta


Questão 8

O valor de um veículo vai diminuindo, no decorrer do tempo, por conta da depreciação, e essa redução ocorre de forma exponencial. Se um determinado veículo, que foi comprado por R$ 60.000, sofre desvalorizações de 10% do valor em relação ao ano anterior, ele custará R$ 39.366 após:

A) 2 anos

B) 3 anos

C) 4 anos

D) 5 anos

E) 6 anos

ver resposta


Questão 9

Ao observar, em um microscópio, uma cultura de bactérias, um cientista percebeu que elas se reproduzem como uma função exponencial. A lei de formação que relaciona a quantidade de bactéricas existentes com o tempo é igual a f(t) = Q · 2t-1, em que Q é a quantidade inicial de bactérias e t é o tempo em horas. Se nessa cultura havia, inicialmente, 700 bactérias, a quantidade de bactérias após 4 horas será de:

A) 7000

B) 8700

C) 15.300

D) 11.200

E) 5600

ver resposta


Questão 10

(Uneb-BA) A expressão P(t) = K · 20,05t fornece o número P de milhares de habitantes de uma cidade, em função do tempo t, em anos. Se, em 1990, essa cidade tinha 300.000 habitantes, quantos habitantes, aproximadamente, espera-se que ela tenha no ano 2000?

A) 352.000

B) 401.000

C) 423.000

D) 439.000

E) 441 000

ver resposta


Questão 11

(Enem 2015) O acréscimo de tecnologias no sistema produtivo industrial tem por objetivo reduzir custos e aumentar a produtividade. No primeiro ano de funcionamento, uma indústria fabricou 8000 unidades de um determinado produto. No ano seguinte, investiu em tecnologia adquirindo novas máquinas e aumentou a produção em 50%. Estima-se que esse aumento percentual se repita nos próximos anos, garantindo um crescimento anual de 50%. Considere P a quantidade anual de produtos fabricados no ano t de funcionamento da indústria. Se a estimativa for alcançada, qual é a expressão que determina o número de unidades produzidas P em função e t, para t ≥ 1?

A) P(t) = 0,5 . t-1 + 8000

B) P(t) = 50 . t-1 + 8000

C) P(t) = 4000 . t-1 + 8000

D) P(t) = 8000 . (0,5)t-1

E) P(t) = 8000 . (1,5)t-1

ver resposta


Questão 12

(Enem 2015) O sindicato de trabalhadores de uma empresa sugere que o piso salarial da classe seja de R$ 1800, propondo um aumento percentual fixo por cada ano dedicado ao trabalho. A expressão que corresponde à proposta salarial (s), em função do tempo de serviço (t), em anos, é s(t) = 1800 (1,03)t.

De acordo com a proposta do sindicato, o salário de um profissional de empresa com 2 anos de tempo de serviço será, em reais,

A) 7416,00.

B) 3819,24.

C) 3709,62.

D) 3708,00.

E) 1909,62.

ver resposta



Respostas

Resposta Questão 1

Alternativa A

I → Falsa, para que a função seja crescente, não basta que a seja positivo, pois ele tem que ser maior que 1. Se a for um número entre 0 e 1, mesmo sendo positivo, a função será decrescente.

II → Verdadeiro, f(0) = a0 → todo número elevado a 0 é igual a 1.

III → Verdadeiro, na lei de formação da função, é possível ver que ela possui variável no expoente, característica essa da função exponencial.

voltar a questão


Resposta Questão 2

Alternativa A

Dada a função f(x) = 2x+3 + 10, queremos encontrar o valor de x que faz com que f(x) = 42, para isso, igualamos a lei de formação da função a 42.

2x+3 + 10 = 42

2x+3 = 42 – 10

2x+3 = 32

Sabemos que 32 = 25:

2x+3 = 25

x + 3 = 5

x = 5 – 2

x = 2

voltar a questão


Resposta Questão 3

Alternativa D

Para que a função seja decrescente, a sua base (k – 4) tem que ser menor que 1 e maior que 0.

Primeiro, verificaremos quando k – 4 será menor que 1.

k – 4 < 1

k < 1 + 4

k < 5

Agora, verificaremos quando k – 4 é maior que 0:

k – 4 > 0

k > 4

Sendo assim, o valor de k tem que estar entre 4 e 5 para que f(x) seja decrescente.

voltar a questão


Resposta Questão 4

Alternativa B

Queremos encontrar o valor de t que faz com que C(t) = 16, então, temos que:

voltar a questão


Resposta Questão 5

Alternativa C

Analisando a gráfico, é possível perceber que ele incia em R$ 500, pois, quando o tempo é igual a 0, a dívida é igual a 500.

Ao analisar o gráfico, é possível perceber que, a cada mês, o valor de juros é maior, o que faz com que a taxa seja variável.

Agora, para analisar se a taxa é superior ou inferior a 10%, sabemos que 10% de 500 = 50. Note que o crescimento no primeiro mês foi maior que 50 reais, logo, a taxa é superior a 10% ao mês.

Então, o valor inicial é de R$ 500 e a taxa é variável e superior a 10% ao mês.

voltar a questão


Resposta Questão 6

Alternativa B

Sabemos que a meia-vida é de 30 anos, então, 150 : 30 = 5. Calculando f(5) e sabendo que m0 = 80, temos que:

voltar a questão


Resposta Questão 7

Alternativa D

Analisando o plano cartesiano, é possível perceber que o ponto (-1, 2) faz parte da função e que ela é uma função exponencial decrescente, então, temos que:

f(x) = ax

Por outro lado, temos que:

f(-1) = 2

Então:

Sabemos que 1 : 2 = 0,5, então, a lei de formação dessa função é f(x) = 0,5x.

voltar a questão


Resposta Questão 8

Alternativa C

Se o valor do veículo sempre diminui 10%, então, ele será 90% do valor anterior. Podemos descrever essa situação pela seguinte função exponencial

V(t) = 60.000 · 0,9t

Queremos encontrar o valor que faz com que V(t) = 39.366:

60.000 · 0,9t = 39.366
 

voltar a questão


Resposta Questão 9

Alternativa E

Dados Q = 700 e t = 4, substituindo na fórmula:

f(t) = K · 2t-1

f(4) = 700 · 24-1
f(4) = 700 · 23
f(4) = 700 · 8
f(4) = 5600

voltar a questão


Resposta Questão 10

Alternativa C

De 1990 até 2000, há 10 anos, então t = 10. Além disso K = 300.000, substituindo, temos que:

P(t) = K · 20,05t

P(10) = 300.000 · 20,05·10
P(10) = 300.000 · 20,5
P(10) = 300.000 · 1,41
P(10) = 423.000

voltar a questão


Resposta Questão 11

Alternativa E

O número de unidades produzidas no primeiro mês é 8000.

P(1) = 8000

No segundo mês, há um aumento de 50%:

P(2) = 8000 · 1,5

No terceiro, há um novo aumento de 50% em relação ao mês anterior, ou seja:

P(3) = 8000 · 1,5 · 1,5 = 8000 · 1,5²

Note que esse comportamento é o mesmo sempre, logo, a lei de formação que descreve essa situação é:

P(t) = 8000 . (1,5)t-1

voltar a questão


Resposta Questão 12

Alternativa E

Queremos encontrar o valor do salário para t = 2:

s(t) = 1800 (1,03)t

s(2) = 1800 (1,03)2

s(2) = 1800 · 1,0609

s(2) = 1909,62

voltar a questão


Artigo relacionado
Leia o artigo relacionado a este exercício e esclareça suas dúvidas
  • Elipse

    Resolva nossos exercícios sobre elipse para fixar seus conhecimentos!
  • Uso dos porquês

    Que tal exercitar seus conhecimentos sobre os porquês? Responda!
  • Verbos

    O quanto você conhece sobre verbos? Nossas questões te colocam à prova!